

# Samsung NASA compatible Outdoor Units

Gateway for the integration of Samsung NASA compatible systems into KNX home automation systems

### **USER MANUAL**

Issue date: 03/2021 r1.2 ENGLISH





## **Important User Information**

#### Disclaimer

The information in this document is for informational purposes only. Please inform HMS Industrial Networks of any inaccuracies or omissions found in this document. HMS Industrial Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Industrial Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Industrial Networks and is subject to change without notice. HMS Industrial Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Industrial Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Industrial Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Gateway for the integration of Samsung NASA compatible systems into KNX home automation systems.

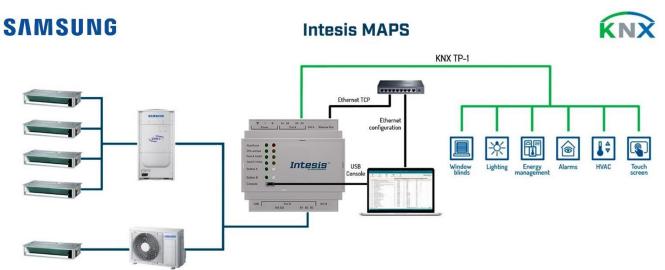
| ORDER CODE      | LEGACY ORDER CODE |
|-----------------|-------------------|
| INKNXSAM004O000 | SM-ACN-KNX-4      |
| INKNXSAM008O000 | SM-ACN-KNX-8      |
| INKNXSAM016O000 | SM-ACN-KNX-16     |
| INKNXSAM0640000 | SM-ACN-KNX-64     |

### **INDEX**

| 1 | Des   | cripti            | on                                                               | 5          |
|---|-------|-------------------|------------------------------------------------------------------|------------|
|   | 1.1   | Intro             | oduction                                                         |            |
|   | 1.1 F | uncti             | onality                                                          | 6          |
|   | 1.2   | Сар               | acity of Intesis                                                 |            |
| 2 | KNX   | Sys               | item                                                             | 8          |
|   | 2.1   | Des               | cription                                                         | 8          |
|   | 2.2   | Poir              | nts definition                                                   | 8          |
| 3 | Con   | necti             | ons                                                              | 10         |
|   | 3.1   | Pow               | ver device                                                       | 11         |
|   | 3.2   | Con               | nect to Samsung NASA installation                                | <b>1</b> 1 |
|   | 3.3   | Con               | nection to KNX                                                   | 11         |
|   | 3.4   | Con               | nection to the configuration tool                                | 11         |
| 4 | Set-  | up pi             | rocess and troubleshooting                                       | 12         |
|   | 4.1   | Pre-              | requisites                                                       | 12         |
|   | 4.2   | Inte              | sis MAPS. Configuration & monitoring tool for Intesis KNX series | 12         |
|   | 4.2   | .1                | Introduction                                                     | 12         |
|   | 4.2   | .2                | Connection                                                       | 12         |
|   | 4.2   | .3                | Configuration tab                                                | 13         |
|   | 4.2   | .4                | KNX configuration                                                | 13         |
|   | 4.2   | .5                | Samsung NASA configuration                                       | 15         |
|   | 4.2   | .6                | Signals                                                          | 17         |
|   | 4.2   | .7                | Sending the configuration to Intesis                             | 18         |
|   | 4.2   | .8                | Diagnostic                                                       | 18         |
|   | 4.2   | .9                | Set-up procedure                                                 | 20         |
| 5 | Elec  | trica             | I & Mechanical Features                                          | 21         |
| 6 | Dime  | ensic             | ons                                                              | 22         |
| 7 | AC l  | Jnit <sup>-</sup> | Types compatibility                                              | 23         |
| 8 | Erro  | r coc             | des for Indoor and Outdoor Units                                 | 24         |
| 9 | Appe  | endix             | A – Communication Objects Table                                  | 28         |

### 1 Description

#### 1.1 Introduction


This document describes the integration of Samsung NASA compatible air conditioning systems into KNX home automation systems using gateway *Intesis KNX – Samsung NASA*.

The aim of this integration is to monitor and control your Samsung NASA air conditioning system, from your KNX TP-1 installation. To do it so, Intesis performs as a one more KNX device, sending and receiving telegrams to group addresses in the KNX network.

Intesis makes available the Samsung NASA air conditioning system indoor units' datapoints through independent KNX objects.

Up to 64 indoor units supported, depending on product version.

This document assumes that the user is familiar with KNX and Samsung technologies and their technical terms.



Integration of Samsung NASA's compatible systems into KNX home automation systems



NOTE: Take following considerations into account for Samsung's NASA R1/R2 network:

- Samsung NASA AC network allows for both automatic and manual addressing. Manual addressing of both indoor and outdoor units must be setup by Samsung installer in order that Intesis communicates properly. Manual addressing is setup by means of DIP switches in outdoor unit, and using the remote controller or DIP switches in the indoor unit.
- Samsung NASA indoor units need to be configured to accept 'central control'. To do so, they need to be configured with so-called 'installation option code' in which segment 5 of this code needs to be set to value '1' to allow central control.

### 1.1 Functionality

Intesis<sup>™</sup> continuously monitors Samsung's NASA R1/R2 network for all configured signals and keeps the updated status of all of them in its memory. It triggers updates on configured group addresses to KNX network on value change.

Commands toward the R1/R2 indoor unit communication adaptor are permitted.

Each indoor unit is offered as a set of KNX objects.

| Element         | Object supported                      |
|-----------------|---------------------------------------|
|                 | <ul> <li>Communication</li> </ul>     |
| Outdoor Unit    | status                                |
|                 | <ul> <li>Addressing status</li> </ul> |
|                 | <ul> <li>Status</li> </ul>            |
| Indoor Unit     | <ul> <li>Command</li> </ul>           |
| iridoor Offic   | <ul> <li>Communication</li> </ul>     |
|                 | status                                |
| General signals | <ul> <li>Command</li> </ul>           |
| (all units)     |                                       |

# 1.2 Capacity of Intesis

| Element                | Max.   | Notes                                                         |
|------------------------|--------|---------------------------------------------------------------|
| Number of indoor units | 64 *   | Number of indoor units that can be controlled through Intesis |
| Number of Objects      | 3904 * | Number of Samsung NASA objects available into Intesis.        |

<sup>\*</sup> There are different models of *Intesis KNX – Samsung NASA AC* each one with different capacity. The table above shows the capacity for the top model (with maximum capacity).

Their order codes are:

- INKNXSAM004O000: Model supporting up to 4 indoor units
- INKNXSAM008O000: Model supporting up to 8 indoor units
- INKNXSAM016O000: Model supporting up to 16 indoor units
- INKNXSAM064O000: Model supporting up to 64 indoor units

### 2 KNX System

In this section, a common description for all Intesis KNX series gateways is given, from the point of view of KNX system which is called from now on *internal system*. Connection with the Samsung NASA R1/R2 system is also called from now on *external system*.

### 2.1 Description

Intesis KNX connects directly to the KNX TP-1 bus and performs as one more device into the KNX system, with the same configuration and operational characteristics as other KNX devices.

Internally, the circuit part connected to the KNX bus is opto-isolated from the rest of the electronics.

Intesis KNX receives, manages and sends all the telegrams related to its configuration to the KNX bus.

On receiving WRITE telegrams of KNX group addresses associated to communication objects, the corresponding messages are sent to the external system (Samsung NASA installation).

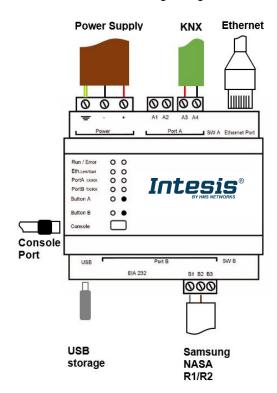
When a change in a signal of the external system is detected, a WRITE telegram is sent to the KNX bus (addressed with the group address associated to the corresponding group object), in order to maintain both systems synchronised in every moment.

The status of the KNX bus is checked continuously and, if a bus drop-down is detected, for example due to failure in the bus power supply, after the KNX bus is restored again, Intesis will send READ telegrams to group addresses of all communication objects marked with flag 'Ri'. The behaviour of each individual point into Intesis is determined by the flags configured for the communication object. See details below.

#### 2.2 Points definition

Every group object in configuration has following KNX properties:

| Property            | Description                                                                                                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description         | Descriptive information about the communication object or signal.                                                                                                                                         |
| Object function     | Information on range of values for the group object.                                                                                                                                                      |
| DPT                 | Datapoint type. It is the KNX data type used to encode the signal's value. It will depend on the type of signal associated in the external system in every case.                                          |
| Group               | It is the KNX group to which the point is associated. It is also the group to which the read (R), write (W), transmit (T), update (U) and read on init (Ri) flags are applied. It is the sending group.   |
| Listening addresses | They are the addresses that can write on the group object, apart of the main group address.                                                                                                               |
| R                   | Read. If this flag is activated, READ telegrams of this group address will be accepted.                                                                                                                   |
| Ri                  | Read on Init. If this flag is activated, the object will trigger corresponding READ request (on associated group address) on initialization.                                                              |
| W                   | Write. If this flag is activated, WRITE telegrams on this group object will be accepted.                                                                                                                  |
| Т                   | Transmit. If this flag is activated, when the group object value changes, due to a change in the external system, a WRITE telegram of the associated group address will be sent to the KNX bus.           |
| U                   | Update. If this flag is activated, UPDATE telegrams (response to READ telegrams) on this group object will be accepted.                                                                                   |
| Active              | If activated, the point will be active in Intesis, if not, the behaviour will be as if the point is not defined. This allows deactivating points without the need of delete them for possible future use. |


These properties are common for all Intesis KNX series gateways. Although each integration may have specific properties according to the type of signals of the external system.

See list of communication objects, according to unit type in section 9



### 3 Connections

Find below information regarding the Intesis connections available.



#### **Power Supply**

Must use NEC Class 2 or Limited Power Source (LPS) and SELV rated power supply.

#### If using DC power supply:

Respect polarity applied of terminals (+) and (-). Be sure the voltage applied is within the range admitted (check table below). The power supply can be connected to earth but only through the negative terminal, never through the positive terminal.

### If using AC power supply:

Make sure the voltage applied is of the value admitted (24 Vac). Do not connect any of the terminals of the AC power supply to earth, and make sure the same power supply is not supplying any other device.

#### Ethernet

Connect the cable coming from the IP network to the connector ETH of the gateway. Use an Ethernet CAT5 cable. If communicating through the LAN of the building, contact the network administrator and make sure traffic on the port used is allowed through all the LAN path (check the gateway user manual for more information). Default IP is 192.168.100.246. DHCP is enabled by default.

#### PortA / KNX

Connect the KNX TP1 bus to connectors A3 (+) and A4 (-) of gateway's PortA. Respect the polarity.

### PortB / R1/R2 Samsung NASA

Connect the R1 (+) R2 (-) bus of Samsung NASA Outdoor Units to the connectors B1 (-), B2 (+) of gateway's PortB. Respect the polarity.

#### **Console Port**

Connect a mini-type B USB cable from your computer to the gateway to allow communication between the Configuration Software and the gateway. Remember that Ethernet connection is also allowed. Check the user manual for more information.

#### **USB**

Connect a USB storage device (not a HDD) if required. Check the user manual for more information.

Ensure proper space for all connectors when mounted (see section 6)

### 3.1 Power device

The first step to perform is to power up the device. To do so, a power supply working with any of the voltage range allowed is needed (check section 5). Once connected the ON led will turn on.

**WARNING!** In order to avoid earth loops that can damage the gateway and/or any other equipment connected to it, we strongly recommend:

- The use of DC power supplies, floating or with the negative terminal connected to earth. Never use a DC power supply with the positive terminal connected to earth.
- The use of AC power supplies only if they are floating and not powering any other device.

### 3.2 Connect to Samsung NASA installation

Use the Port B connector in the top corner of the Intesis device in order to connect Samsung NASA bus to the Intesis. Remember to follow all safety precautions indicated by Samsung.

To properly communicate with the Intesis, take into account following considerations:

- Samsung NASA AC network allows for both automatic and manual addressing. **Manual addressing of both** indoor and outdoor units must be setup by Samsung installer in order that Intesis communicates properly. Manual addressing is setup by means of DIP switches in outdoor unit, and using the remote controller or DIP switches in the indoor unit.
- Samsung NASA indoor units **need to be configured to accept 'central control'**. To do so, they need to be configured with so-called 'installation option code' in which segment 5 of this code needs to be set to value '1' to allow central control.

Connect the Samsung NASA bus to connectors B1 (R1/+) and B2 (R2/-) of gateway's PortB. Respect the polarity.

### 3.3 Connection to KNX

Connect the KNX TP1 bus to connectors A3 (+) and A4 (-) of gateway's PortA. Respect the polarity.

#### 3.4 Connection to the configuration tool

This action allows the user to have access to configuration and monitoring of the device (more information can be found in the configuration tool User Manual). Two methods to connect to the PC can be used:

- Ethernet: Using the Ethernet port of Intesis.
- USB: Using the console port of Intesis, connect a USB cable from the console port to the PC.

### 4 Set-up process and troubleshooting

### 4.1 Pre-requisites

It is necessary to have a KNX installation, device or interface operative and well connected to the corresponding KNX port of Intesis. It is also required to have a Samsung NASA Air Conditioner installation, with accessible R1/R2 port for connection of Intesis.

Connectors, connection cables, PC to use the configuration tool and other auxiliary material, if needed, are not supplied by HMS Industrial Networks SLU for this standard integration.

Items supplied by HMS Networks for this integration are:

- Intesis gateway.
- Link to download the configuration tool.
- USB Console cable to communicate with Intesis.
- Product documentation.

### 4.2 Intesis MAPS. Configuration & monitoring tool for Intesis KNX series

### 4.2.1 Introduction

Intesis MAPS is a Windows® compatible software developed specifically to monitor and configure Intesis new generation gateways.

The installation procedure and main functions are explained in the *Intesis MAPS KNX User Manual*. This document can be downloaded from the link indicated in the installation sheet supplied with the Intesis device or in the product website at <a href="https://www.intesis.com">www.intesis.com</a>

In this section, only the specific case of Samsung NASA to KNX systems will be covered.

Please check the Intesis MAPS KNX User Manual for specific information about the different parameters and how to configure them.

#### 4.2.2 Connection

To configure the Intesis connection parameters press on the Connection button in the menu bar.

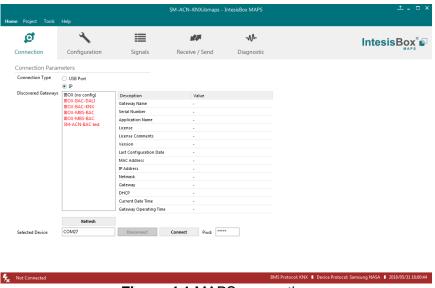



Figure 4.1 MAPS connection

### 4.2.3 Configuration tab

Select the *Configuration* tab to configure the connection parameters. Three subsets of information are shown in this window: General (Gateway general parameters), KNX (KNX interface configuration) and Samsung NASA (Samsung NASA interface parameters).

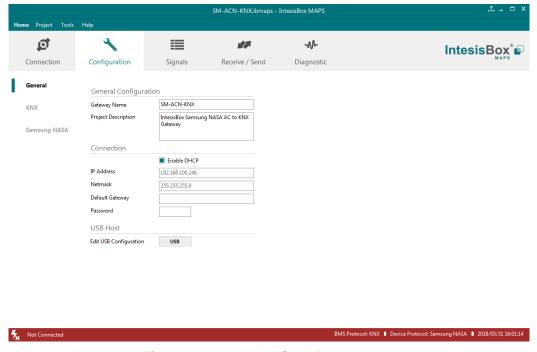



Figure 4.2 Intesis MAPS configuration tab

### 4.2.4 KNX configuration

Set parameters of KNX interface of Intesis.

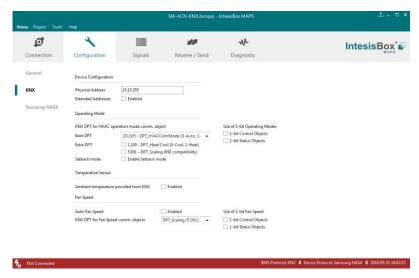



Figure 4.3 Intesis MAPS KNX configuration tab

#### 1. Device configuration

- **1.1. Physical Address.** KNX physical address of the device in the network
- 1.2. Extended Addresses. Enables usage of KNX Extended addresses (rangefrom 16/0/0 to 32/7/255).

- 2. Operating Mode. Settings related to KNX interface for control and feedback of AC unit's operating mode.
  - **2.1. KNX DPT for HVAC operation mode comm object. Base DPT.** Base DPT to use for control/monitor the operating mode. Following DPT types are offered:
    - o DPT 20.105. DPT HVACContrMode: 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry
    - DPT\_5.x (non-standarized): 0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool, 5-Setback (if enabled)
  - **2.2. KNX DPT for HVAC operation mode comm object. Extra DPT.** Additional DPT to use for control/monitor the operating mode.
    - DPT 1.100. DPT Heat/Cool: 0-Cool, 1-Heat.
    - DPT\_5.001. DPT\_Scaling: Enables objects "Control\_ Heat Mode & On" and "Control\_ Cool Mode & On" at IC/FU unit types. Their type is DPT\_Scaling (0..100%), and their ending is to be able to control parameters On/Off, Cool/Heat indoor unit from a single percentage object. They are meant to provide compatibility with certain thermostats oriented to the operation of valves for Heating/Cooling. Whenever a value > 0% is received at each of these two objects, the corresponding operating mode and ON operation is sent to the indoor unit. Whenever both values are 0%, indoor unit is set to OFF
  - **2.3. Use of 1-bit Operating Modes. 1-bit Control Objects.** Enables a bit-type object for the control of each operating mode.
  - **2.4. Use of 1-bit Operating Modes. 1-bit Status Objects.** Enables a bit-type object for monitoring each operating mode.
- 3. Temperature Sensor.
  - **3.1. Ambient temperature provided from KNX.** Enables object Control\_KNX ambient temperature.



**NOTE:** Indoor unit does not accept, by itself, that an ambient temperature for control of operation of the indoor unit is provided. To allow regulation of indoor unit according to a temperature reference from KNX, what Intesis does is passing a different temperature setpoint to the indoor unit than the one required by the user. The passed setpoint is such that the difference 'Ambient temperature reported by Samsung NASA – AC setpoint' is equal to 'Ambient temperature reported by KNX – AC setpoint required by KNX', using the following formula:

"AC Setp. Temp" = "AC Ret. Temp" - ("KNX Amb. Temp." - "KNX Setp. Temp")

#### Where:

- AC Setp. Temp: AC indoor unit setpoint temperature
- AC Ret. Temp: AC indoor unit return temperature
- KNX Amb. Temp.: Ambient temperature provided from KNX
- KNX Setp. Temp: Setpoint temperature provided from KNX

Consequently, when using this feature (Ambient temp provided from KNX), setpoint at AC and setpoint in KNX will not necessarily be the same (actually, user will not be able to operate setpoint from AC System controllers as the remote controller).

- 4. Fan Speed. Settings related to KNX interface for control and feedback of AC unit's fan speed.
  - **4.1. Auto Fan Speed.** Configures availability of Auto Fan Speed control/monitoring objects. Necessary if your indoor unit has auto fan speed.
  - **4.2. KNX DPT for Fan Speed comm objects. DPT\_5.001, DPT\_Scaling**. Control/monitoring of Fan Speed is performed by means of scaling (percentage) objects. Thresholds for control object and values for status object will vary according to number of fanspeeds of the unit.

- **4.2. KNX DPT for Fan Speed comm objects. DPT\_5.010, DPT\_Value\_1\_Ucount**. Control/monitoring of Fan Speed is performed by means of enumerated values.
- **4.3. KNX DPT for Fan Speed comm objects. DPT\_5.010, DPT\_Value\_1\_Ucount**. Control/monitoring of Fan Speed is performed by means of enumerated values.
- 4.4. Use of 1-bit Fan Speed. 1-bit Control Objects. Enables a bit-type object for control of fan speed.
- 4.5. Use of 1-bit Fan Speed. 1-bit Status Objects. Enables a bit-type object for monitoring of each fan speed.

### 4.2.5 Samsung NASA configuration

Set parameters for connection with Samsung NASA's installation.

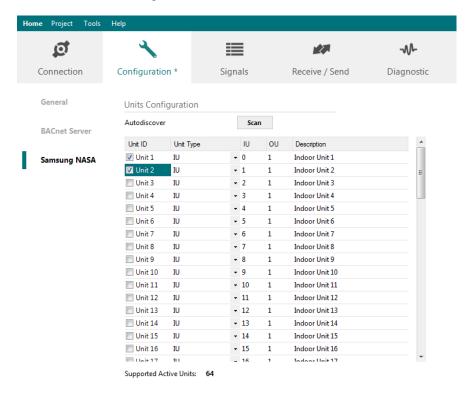



Figure 4.4 Intesis MAPS Samsung NASA configuration tab

In Units Configuration section you need to enter, for each unit:

- Active. If it's active (checkbox at Unit xx), ranging from 1 to 64 indoor units that will be integrated (maximum number of units will depend on Intesis model)
- **Unit type**. Type can be one of the following: IU, HE, HT, EHS, AHU, ERV, ERV+, CHILLER. Available signals will vary according to unit type.
- IU address. Address 0..63 of Unit in Samsung NASA R1/R2 bus. Remember that manual addressing of Samsung indoor units is required.
- OU address. Address 0..15 of Outdoor Unit in Samsung NASA R1/R2 bus. Remember that manual addressing
  of Samsung outdoorunits is required.
- Description. Descriptive name to ease identification of the unit (for example, 'living room floor 1 unit', etc).

Additional to manual entry of each unit, autodiscover of present units in an R1/R2 installation is possible. To do so, click button **Scan**. Following window will appear:

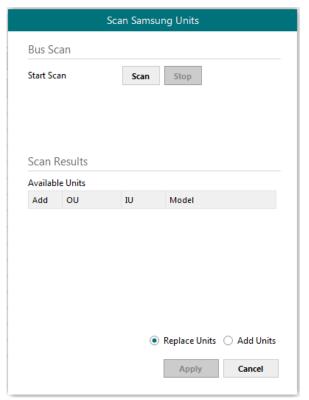



Figure 4.5 Intesis MAPS Scan Samsung Units window

By pressing **Scan** button, connected Samsung NASA R1/R2 bus will be scanned for available units. Error window will appear if there is a problem in the connection with R1/R2 bus (units not powered, bus not connected, ...).

A progress bar will appear during the scan, which will take up to a few minutes. After scan is complected, detected units will be shown in available units as follows:

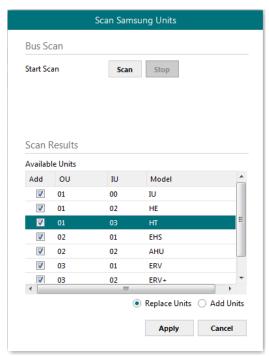



Figure 4.6 Intesis MAPS Scan Samsung Units window with scan results

Select with its checkbox units to add (or replace) in installation, according to selection Replace Units / Add Units.

After units to be integrated are selected, click button **Apply**, and changes will appear in previous **Units Configuration** window.

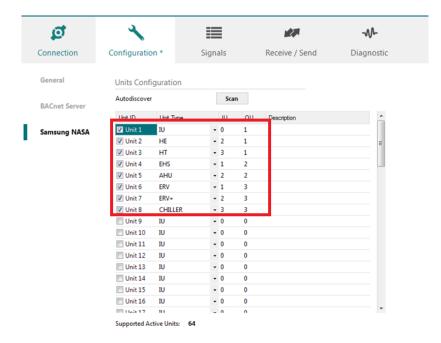



Figure 4.7 Intesis MAPS Samsung NASA configuration tab after importing scan results

### 4.2.6 Signals

All available KNX objects, its corresponding description and other main parmaters are listed in the signals tab.

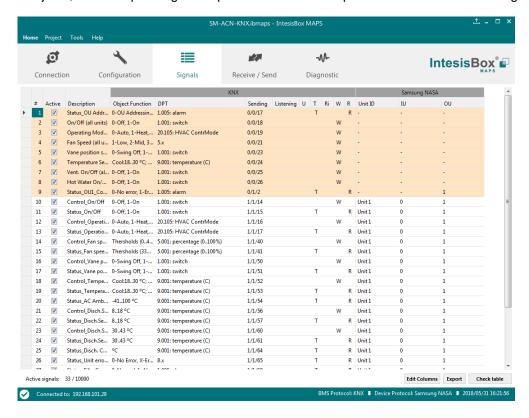



Figure 4.8 Intesis MAPS Signals tab

### 4.2.7 Sending the configuration to Intesis

When the configuration is finished, follow the next steps.

- 1.- Save the project (Menu option *Project->Save*) on your hard disk (more information in Intesis MAPS User Manual).
- 2.- Go to tab 'Receive / Send' of MAPS, and in Send section, press Send button. Intesis will reboot automatically once the new configuration is loaded.

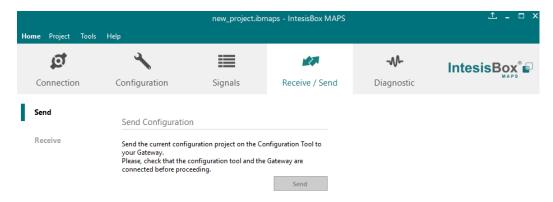



Figure 4.9 Intesis MAPS Receive/Send tab

After any configuration change, do not forget to send the configuration file to the Intesis using the Send button in the Receive / Send section.

### 4.2.8 Diagnostic

To help integrators in the commissioning tasks and troubleshooting, the Configuration Tool offers some specific tools and viewers.

In order to start using the diagnostic tools, connection with the Gateway is required.

The Diagnostic section is composed by two main parts: Tools and Viewers.

#### Tools

Use the tools section to check the current hardware status of the box, log communications into compressed files to be sent to the support, change the Diagnostic panels' view or send commands to the gateway.

#### Viewers

In order to check the current status, viewer for the Internal and External protocols are available. It is also available a generic Console viewer for general information about communications and the gateway status and finally a Signals Viewer to simulate the BMS behavior or to check the current values in the system.

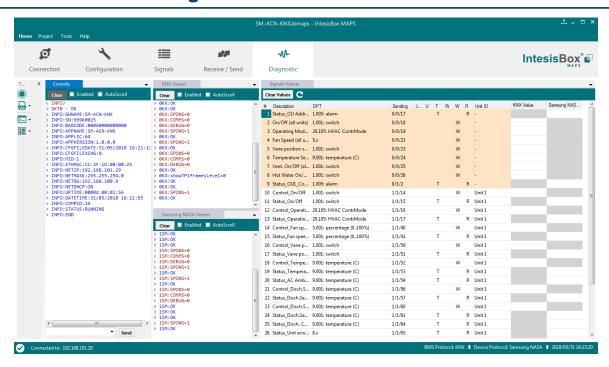



Figure 4.10 Diagnostic

More information about the Diagnostic section can be found in the Configuraion Tool manual.

### 4.2.9 Set-up procedure

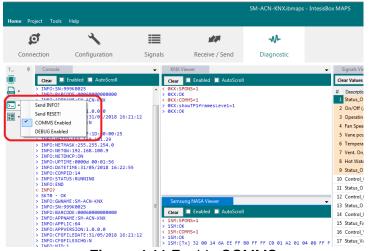
- 1. Install Intesis MAPS on your laptop, use the setup program supplied for this and follow the instructions given by the Installation wizard.
- 2. Install Intesis in the desired installation site. Installation can be on DIN rail or on a stable not vibrating surface (DIN rail mounted inside a metallic industrial cabinet connected to ground is recommended).
- 3. Connect the KNX communication cable coming from the KNX network to the port marked as Port A on Intesis (More details in section 3).
- 4. Connect the communication cable coming from the Samsung NASA R1/R2 installation to the port marked as Port B of Intesis (More details in section 3).
- 5. Power up Intesis. The supply voltage can be 9 to 36 Vdc or just 24 Vac. Take care of the polarity of the supply voltage applied.

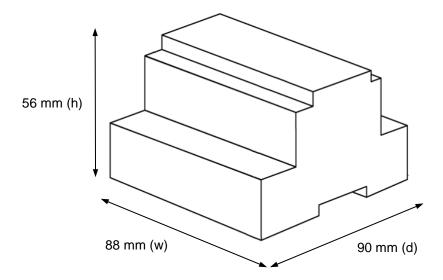
**WARNING!** In order to avoid earth loops that can damage Intesis and/or any other equipment connected to it, we strongly recommend:

- The use of DC power supplies, floating or with the negative terminal connected to earth. Never use a DC power supply with the positive terminal connected to earth.
- The use of AC power supplies only if they are floating and not powering any other device.
- 6. If you want to connect using IP, connect the Ethernet cable from the laptop PC to the port marked as Ethernet of Intesis (More details in section 3).

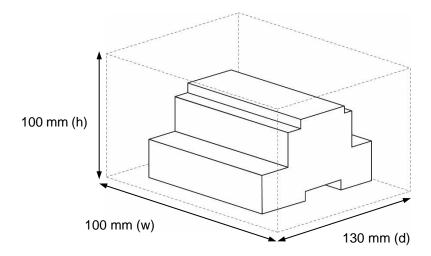
If you want to connect using USB, connect the USB cable from the laptop PC to the port marked as Console of Intesis (More details in section 3).

- Open Intesis MAPS, create a new project selecting a copy of the one named INKNXSAM---O000.
- 8. Modify the configuration as desired, save it and download the configuration file to Intesis as explained in the Intesis MAPS user manual.
- 9. Visit the Diagnostic section and check that there is communication activity, some TX frames and some other RX frames. This means that the communication with the KNX installation and Samsung installation is OK. In case there is no communication activity between Intesis and the KNX side and/or Samsung units, check that those are operative: check communication cable used to connect all devices and any other communication parameter.





Figure 4.11 Enable COMMS

### 5 Electrical & Mechanical Features




| Enclosure                                                        | Plastic, type PC (UL 94 V-0) Net dimensions (dxwxh): 90x88x56 mm Recommended space for installation (dxwxh): 130x100x100mm Color: Light Grey. RAL 7035                             | Battery                 | Size: Coin 20mm x 3.2mm<br>Capacity: 3V / 225mAh<br>Type: Manganese Dioxide Lithium                                                        |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mounting                                                         | Wall.<br>DIN rail EN60715 TH35.                                                                                                                                                    | Console Port            | Mini Type-B USB 2.0 compliant<br>1500VDC isolation                                                                                         |  |  |  |
| Terminal Wiring<br>(for power supply and<br>low-voltage signals) | Per terminal: solid wires or stranded wires (twisted or with ferrule) 1 core: 0.5mm² 2.5mm² 2 cores: 0.5mm² 1.5mm² 3 cores: not permitted                                          | USB port                | Type-A USB 2.0 compliant Only for USB flash storage device (USB pen drive) Power consumption limited to 150mA (HDD connection not allowed) |  |  |  |
| Barras                                                           | 1 x Plug-in screw terminal block (3 poles)<br>9 to 36VDC +/-10%, Max.: 140mA.                                                                                                      | Push Button             | Button A: Not used<br>Button B: KNX Programming button (not used)                                                                          |  |  |  |
| Power                                                            | 24VAC +/-10% 50-60Hz, Max.: 127mA<br>Recommended: 24VDC                                                                                                                            | Operation Temperature   | 0°C to +60°C                                                                                                                               |  |  |  |
| Ethernet                                                         | 1 x Ethernet 10/100 Mbps RJ45<br>2 x Ethernet LED: port link and activity                                                                                                          | Operational<br>Humidity | 5 to 95%, no condensation                                                                                                                  |  |  |  |
|                                                                  | 1 x KNX TP-1 Plug-in screw terminal block orange (2 poles)<br>2500VDC isolation from other ports                                                                                   | Protection              | IP20 (IEC60529)                                                                                                                            |  |  |  |
| Port A                                                           | KNX power consumption: 5mA Voltage rating: 29VDC  1 x Plug-in screw terminal block green (2 poles) Reserved for future use                                                         | LED<br>Indicators       | 10 x On board LED indicators 1 x Error LED 1 x Power LED 2 x Ethernet Link/Speed 2 x Port A TX/RX                                          |  |  |  |
| Switch A<br>(SWA)                                                | 1 x DIP-Switch for serial EIA485 configuration:<br>Reserved for future use                                                                                                         | maicators               | 2 x Port A TX/RX 2 x Port B TX/RX 1 x Button A indicator 1 x Button B indicator                                                            |  |  |  |
| PORT B                                                           | x Serial EIA232 (SUB-D9 male connector)     Not used     x Samsung Nasa bus Plug-in screw terminal block (3 poles)     R1 R2 (Samsung Nasa)     1500VDC isolation from other ports |                         |                                                                                                                                            |  |  |  |
| Switch B<br>(SWB)                                                | 1 x DIP-Switch for PORT B configuration:<br>Not used (leave all OFF)                                                                                                               | 100 mm                  |                                                                                                                                            |  |  |  |

### 6 Dimensions



Recommended available space for its installation into a cabinet (wall or DIN rail mounting), with space enough for external connections



# 7 AC Unit Types compatibility

A list of Samsung unit model references compatible with INKNXSAM004O000 / INKNXSAM008O000 / INKNXSAM016O000 / INKNXSAM064O000 and their available features can be found in:

https://www.intesis.com/docs/compatibilities/inxxxsam0xxo000\_compatibility



### 8 Error codes for Indoor and Outdoor Units

This list contains all possible values shown in KNX Object for "Error Code" for each indoor unit and outdoor unit.

It must be taken into account that Outdoor Units are only able to reflect a single error for each indoor / outdoor unit in the system. Thus, a unit having two or more active errors from that list will only report a single error code – the one of the first error that has been detected.

| Error | Description                                                                                        |  |  |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Code  |                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 101   | Indoor unit communication error. Indoor unit can not receive any data from outdoor unit.           |  |  |  |  |  |  |  |  |  |  |
| 102   | Communication error between indoor unit and outdoor unit. Displayed in indoor unit.                |  |  |  |  |  |  |  |  |  |  |
| 108   | Error due to repeated address setting (When 2 or more devices has same address within the          |  |  |  |  |  |  |  |  |  |  |
| 110   | Communication error between Hydro unit HT(Main PBA) and Control kit PBA(Detection from             |  |  |  |  |  |  |  |  |  |  |
| 110   | the Control kit)                                                                                   |  |  |  |  |  |  |  |  |  |  |
| 121   | Error on indoor temperature sensor of indoor unit (Short or Open)                                  |  |  |  |  |  |  |  |  |  |  |
| 122   | Error on EVA IN sensor of indoor unit (Short or Open)                                              |  |  |  |  |  |  |  |  |  |  |
| 123   | Error on EVA OUT sensor of indoor unit (Short or Open)                                             |  |  |  |  |  |  |  |  |  |  |
| 128   | EVA IN temperature sensor of indoor unit is detached from EVA IN pipe                              |  |  |  |  |  |  |  |  |  |  |
| 129   | EVA OUT temperature sensor of indoor unit is detached from EVA OUT pipe                            |  |  |  |  |  |  |  |  |  |  |
| 130   | Heat exchanger in/out sensors of indoor unit are detached                                          |  |  |  |  |  |  |  |  |  |  |
| 135   | RPM feedback error of indoor unit's cleaning fan                                                   |  |  |  |  |  |  |  |  |  |  |
| 151   | Error due to opened EEV of indoor unit (2nd detection)                                             |  |  |  |  |  |  |  |  |  |  |
| 152   | Error due to closed EEV of indoor unit (2nd detection)                                             |  |  |  |  |  |  |  |  |  |  |
| 153   | Error on floating switch of indoor unit (2nd detection)                                            |  |  |  |  |  |  |  |  |  |  |
| 154   | RPM feedback error of indoor unit                                                                  |  |  |  |  |  |  |  |  |  |  |
| 1.61  | Mixed operation mode error of indoor unit; When outdoor unit is getting ready to operate in        |  |  |  |  |  |  |  |  |  |  |
| 161   | cooling (or heating) and some of the indoor unit is trying to operate in heating (or cooling) mode |  |  |  |  |  |  |  |  |  |  |
| 162   | EEPROM error of MICOM (Physical problem of parts/circuit)                                          |  |  |  |  |  |  |  |  |  |  |
| 163   | Indoor unit's remote controller option input is Incorrect or missing. Outdoor unit EEPROM data     |  |  |  |  |  |  |  |  |  |  |
| 103   | error                                                                                              |  |  |  |  |  |  |  |  |  |  |
| 180   | Simultaneous opening of cooling/heating MCU SOL V/V (1st detection)                                |  |  |  |  |  |  |  |  |  |  |
| 181   | Simultaneous opening of cooling/heating MCU SOL V/V (2nd detection)                                |  |  |  |  |  |  |  |  |  |  |
| 185   | Cross wiring error between communication and power cable of indoor unit                            |  |  |  |  |  |  |  |  |  |  |
| 186   | Connection error or problem on SPi                                                                 |  |  |  |  |  |  |  |  |  |  |
| 100   | No temperature changes in EVA IN during pipe inspection or changes in temperature indoor           |  |  |  |  |  |  |  |  |  |  |
| 190   | unit with wrong address                                                                            |  |  |  |  |  |  |  |  |  |  |
| 191   | No temperature changes in EVA OUT during pipe inspection or changes in temperature is seen         |  |  |  |  |  |  |  |  |  |  |
| 191   | in indoor unit with wrong address                                                                  |  |  |  |  |  |  |  |  |  |  |
| 198   | Error due to disconnected thermal fuse of indoor unit                                              |  |  |  |  |  |  |  |  |  |  |
| 201   | Communication error between indoor and outdoor units (installation number setting error,           |  |  |  |  |  |  |  |  |  |  |
| 201   | repeated indoor unit address, indoor unit communication cable error)                               |  |  |  |  |  |  |  |  |  |  |
| 202   | Communication error between indoor and outdoor units (Communication error on all indoor            |  |  |  |  |  |  |  |  |  |  |
| 202   | unit, outdoor unit communication cable error)                                                      |  |  |  |  |  |  |  |  |  |  |
| 203   | Communication error between main and sub outdoor units                                             |  |  |  |  |  |  |  |  |  |  |
| 205   | Communication error on all PBA within the outdoor unit C-Box, communication cable error            |  |  |  |  |  |  |  |  |  |  |
| 206   | E206-C001: HUB PBA communication error / E206-C002: FAN PBA communication errorE206-               |  |  |  |  |  |  |  |  |  |  |
| 200   | C003:INV1 PBA communication error / E206-C004: INV2 PBA communication error                        |  |  |  |  |  |  |  |  |  |  |
| 211   | When single indoor unit uses 2 MCU ports that are not in series.                                   |  |  |  |  |  |  |  |  |  |  |
| 212   | If the rotary switch (on the MCU) for address setting of the indoor unit has 3 or more of the      |  |  |  |  |  |  |  |  |  |  |
|       | same address                                                                                       |  |  |  |  |  |  |  |  |  |  |

| 213 | When total number of indoor units assigned to MCU is same as actual number of installed indoor units but there is indoor unit that is not installed even though it is assigned on MCU |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 214 | When number of MCU is not set correctly on the outdoor unit or when two or more MCU was installed some of them have the same address                                                  |
| 215 | When two different MCU's have same address value on the rotary switch                                                                                                                 |
| 216 | When indoor unit is not installed to a MCU port but the switch on the port is set to On.                                                                                              |
|     | hen indoor unit is connected to a MCU port but indoor unit is assigned to a MCU and the switch                                                                                        |
| 217 | on the port is set to Off                                                                                                                                                             |
| 218 | When there's at least one or more actual number of indoor unit connection compared to number of indoor units assigned to MCU                                                          |
| 219 | Error on temperature sensor located on MCU intercooler inlet (Short or Open)                                                                                                          |
| 220 | Error on temperature sensor located on MCU intercooler outlet (Short or Open)                                                                                                         |
| 221 | Error on outdoor temperature sensor of outdoor unit (Short or open)                                                                                                                   |
| 231 | Error on COND OUT temperature sensor of main outdoor unit (Short or Open)                                                                                                             |
| 241 | COND OUT sensor is detached                                                                                                                                                           |
| 251 | Error on discharge temperature sensor of compressor 1 (Short or Open)                                                                                                                 |
| 257 | Error on discharge temperature sensor of compressor 2 (Short or Open)                                                                                                                 |
| 262 | Discharge temperature sensor of compressor 1 is detached from the sensor holder on the pipe                                                                                           |
| 263 | Discharge temperature sensor of compressor 2 is detached from the sensor holder on the pipe                                                                                           |
| 266 | Top sensor of compressor 1 is detached                                                                                                                                                |
| 267 | Top sensor of compressor 2 is detached                                                                                                                                                |
| 269 | Suction temperature sensor is detached from the sensor holder on the pipe                                                                                                             |
| 276 | Error on top sensor of compressor 1 (Short or Open)                                                                                                                                   |
| 277 | Error on top sensor of compressor 2 (Short or Open)                                                                                                                                   |
| 291 | Refrigerant leakage or error on high pressure sensor (Short or Open)                                                                                                                  |
| 296 | Refrigerant leakage or error on low pressure sensor (Short or Open)                                                                                                                   |
| 308 | Error on suction temperature sensor (Short or Open)                                                                                                                                   |
| 311 | Error on temperature sensor of double layer pipe/liquid pipe(sub heat exchanger) (Short or Open)                                                                                      |
| 321 | Error on EVI (ESC) IN temperature sensor (Short or Open)                                                                                                                              |
| 322 | Error on EVI (ESC) OUT temperature sensor (Short or Open)                                                                                                                             |
| 323 | Error on suction sensor 2 (Short or Open)                                                                                                                                             |
| 346 | Error due to operation failure of Fan2                                                                                                                                                |
| 347 | Motor wire of Fan2 is not connected                                                                                                                                                   |
| 348 | Lock error on Fan2 of outdoor unit                                                                                                                                                    |
| 353 | Error due to overheated motor of outdoor unit's Fan2                                                                                                                                  |
| 355 | Error due to overheated IPM of Fan2                                                                                                                                                   |
| 361 | Error due to operation failure of inverter compressor 2                                                                                                                               |
| 364 | Error due to over-current of inverter compressor 2                                                                                                                                    |
| 365 | V-limit error of inverter compressor 2                                                                                                                                                |
| 366 | Error due to over voltage /low voltage of inverter PBA2                                                                                                                               |
| 367 | Error due to unconnected wire of compressor 2                                                                                                                                         |
| 368 | Output current sensor error of inverter PBA2                                                                                                                                          |
| 369 | DC voltage sensor error of inverter PBA2                                                                                                                                              |
| 374 | Heat sink temperature sensor error of inverter PBA2                                                                                                                                   |
| 378 | Error due to overcurrent of Fan2                                                                                                                                                      |
| 385 | Error due to input current of inverter 2                                                                                                                                              |
| 386 | Over-voltage/low-voltage error of Fan2                                                                                                                                                |
| 387 | Hall IC connection error of Fan2                                                                                                                                                      |
| 389 | V-limit error on Fan2 of compressor                                                                                                                                                   |



| 396 D<br>399 H<br>400 E | Output current sensor error of Fan2  DC voltage sensor error of Fan2  Heat sink temperature sensor error of Fan2 |
|-------------------------|------------------------------------------------------------------------------------------------------------------|
| 399 H<br>400 E          | •                                                                                                                |
| 400 E                   | Heat sink temperature sensor error of Fan?                                                                       |
|                         | reat sink temperature sensor error or ranz                                                                       |
| 407 C                   | Error due to overheat caused by contact failure on IPM of Inverter PBA2                                          |
|                         | Compressor operation stop due to high pressure protection control                                                |
| 410 C                   | Compressor operation stop due to low pressure protection control or refrigerant leakage                          |
|                         | Compressor operation stop due to discharge temperature protection control                                        |
| 425 P                   | Phase reversal or phase failure (3Ø outdoor unit wiring, R-S-T-N ), connection error on 3 phase                  |
| ir                      | nput                                                                                                             |
|                         | Compressor operation stop due abnormal compression ratio                                                         |
| 1 4×× 1                 | EVI (ESC) EEV leakage or internal leakage of intercooler or incorrect connector insertion of EVI                 |
| (1                      | (ESC) EEV                                                                                                        |
|                         | Error due to refrigerant leakage                                                                                 |
|                         | Heating mode restriction due to high air temperature                                                             |
|                         | Cooling mode restriction due to low air temperature                                                              |
|                         | Refrigerant charing restriction in heating mode when air temperature is over 15 °C                               |
| 443 C                   | Operation prohibited due to the pressure drop                                                                    |
|                         | CCH is deatched                                                                                                  |
|                         | Error due to operation failure of Fan1                                                                           |
| 447 N                   | Motor wire of Fan1 is not connected                                                                              |
|                         | Lock error on Fan1                                                                                               |
| -                       | Error due to ZPC detection circuit problem or power failure                                                      |
| 453 E                   | Error due to overheated motor of outdoor unit's Fan1                                                             |
| 455 E                   | Error due to overheated IPM of Fan1                                                                              |
|                         | Error due to operation failure of inverter compressor 1                                                          |
|                         | Compressor stop due to full current control or error due to low current on CT2                                   |
|                         | Error due to over-current of inverter compressor 1                                                               |
|                         | V-limit error of inverter compressor 1                                                                           |
|                         | Error due to over voltage /low voltage of inveter PBA1                                                           |
|                         | Error due to unconnected wire of compressor 1                                                                    |
| <del> </del>            | Output current sensor error of inverter PBA1                                                                     |
| <del> </del>            | DC voltage sensor error of inver PBA1                                                                            |
|                         | Heat sink temperature sensor error of inverter PBA1                                                              |
|                         | Error due to overcurrent of Fan1                                                                                 |
| -                       | Error due to input current of inverter 1                                                                         |
|                         | Error due to over voltage/low voltage of Fan                                                                     |
|                         | Hall IC error of Fan1                                                                                            |
|                         | V-limit error on Fan1 of compressor                                                                              |
|                         | Output current sensor error of Fan1                                                                              |
| <del> </del>            | DC voltage sensor error of Fan1                                                                                  |
|                         | Heat sink temperature sensor error of Fan1                                                                       |
|                         | Error due to overheat caused by contact failure on IPM of Inverter PBA1                                          |
|                         | Error due to alert the user to check if the service valve is closed                                              |
| -                       | Error due to self diagnosis of compressor operation                                                              |
|                         | Error due to self diagnosis of high pressure sensor                                                              |
|                         | Error due to self diagnosis of low pressure sensor                                                               |
|                         | Outdoor unit's option switch setting error (when iinappropriate option switch is on)                             |
| 1 564 1                 | Error due to module installation of indoor unit with old version (Micom version needs to be checked)             |
| 573 E                   | Error due to using single type outdoor unit in a module installation                                             |



| 601 | Communication error between remote controller and the DVM Hydro unit / Hydro unit HT           |
|-----|------------------------------------------------------------------------------------------------|
| 602 | Communication error between master and slave remote controller                                 |
| 604 | Tracking error between remote controller and the DVM Hydro unit / Hydro unit HT                |
| 618 | Error due to exceeding maximum numbers of Hydro unit installation (16 units)                   |
| 627 | Error due to exceeding maximum numbers of wired remote controller installation (2 units)       |
| 633 | Error caused by installing mixed models                                                        |
| 653 | Remote controller's temperature sensor is disconnected or has problem                          |
| 654 | Data error on remote controller (Memory read/write error)                                      |
| 702 | Error due to closed EEV of indoor unit (1st detection)                                         |
| 703 | Error due to opened EEV of indoor unit (1st detection)                                         |
| 901 | Error on the sensor of water inlet pipe (Short or Open)                                        |
| 902 | Error on the sensor of water outlet pipe (Short or Open)                                       |
| 904 | Error on water tank (Short or open)                                                            |
| 907 | Error due to pipe rupture protection                                                           |
| 908 | Error due to freeze prevention(Re-operation is possible)                                       |
| 909 | Error due to freeze prevention(Re-operation is impossible)                                     |
| 910 | Water temperature sensor on water outlet pipe is detached                                      |
| 911 | Flow switch off error, When the switch is turned off within 10 seconds after a pump starts its |
| 911 | operation(Re-operation is possible)                                                            |
| 913 | Six times detection for Flow Switch Error(Re-operation is not possible)                        |
| 914 | Error due to incorrect thermostat connection                                                   |
| 915 | Error on DC fan(Non-operating)                                                                 |
| 573 | Error due to using single type outdoor unit in a module installation                           |
| 601 | Communication error between remote controller and the DVM Hydro unit / Hydro unit HT           |
| 602 | Communication error between master and slave remote controller                                 |
| 604 | Tracking error between remote controller and the DVM Hydro unit / Hydro unit HT                |
| 618 | Error due to exceeding maximum numbers of Hydro unit installation (16 units)                   |
| 627 | Error due to exceeding maximum numbers of wired remote controller installation (2 units)       |
| 633 | Error caused by installing mixed models                                                        |
| 653 | Remote controller's temperature sensor is disconnected or has problem                          |
| 654 | Data error on remote controller (Memory read/write error)                                      |
| 702 | Error due to closed EEV of indoor unit (1st detection)                                         |
| 703 | Error due to opened EEV of indoor unit (1st detection)                                         |
| 901 | Error on the sensor of water inlet pipe (Short or Open)                                        |
| 902 | Error on the sensor of water outlet pipe (Short or Open)                                       |
| 904 | Error on water tank (Short or open)                                                            |
| 907 | Error due to pipe rupture protection                                                           |
| 908 | Error due to freeze prevention(Re-operation is possible)                                       |
| 909 | Error due to freeze prevention(Re-operation is impossible)                                     |
| 910 | Water temperature sensor on water outlet pipe is detached                                      |
| 011 | Flow switch off error, When the switch is turned off within 10 seconds after a pump starts its |
| 911 | operation(Re-operation is possible)                                                            |
| 913 | Six times detection for Flow Switch Error(Re-operation is not possible)                        |
| 914 | Error due to incorrect thermostat connection                                                   |
| 915 | Error on DC fan(Non-operating)                                                                 |



# 9 Appendix A – Communication Objects Table

Available signals depend on unit type, which must be selected in MAPS configuration tool (IU, HE, HT, EHS, AHU, ERV, ERV+, CHILLER)

|                   |              |         |   | U | INIT | TYF | PΕ  |      |         |                                       |        | DATAPOINT TYPE    |        |   | FL | AGS |   | FUNCTION                                                                 |
|-------------------|--------------|---------|---|---|------|-----|-----|------|---------|---------------------------------------|--------|-------------------|--------|---|----|-----|---|--------------------------------------------------------------------------|
| TOPIC             |              |         | 뿦 | 눞 | EHS  | AHU | ERV | ERV+ | CHILLER | NAME                                  | LEN    | DPT_NAME          | DPT_ID | R | W  | Т   | U |                                                                          |
|                   | СОММ         | х       | х | х | х    | х   | x   | х    | x       | Status_OUXX_Communication Error OU    | 1 bit  | DPT_Alarm         | 1.005  | R |    | Т   |   | 0-No error, 1-Error                                                      |
|                   | ERR          | х       | х | х | х    | х   | х   | х    | х       | Status_OU Addressing Error            | 1 bit  | DPT_Alarm         | 1.005  | R |    | Т   |   | 0-OU Addressing OK; 1-Manual Addr in OU required                         |
|                   | ON/OFF       | х       | х | х | х    | х   | х   | х    | х       | On/Off (all units)                    | 1 bit  | DPT_Switch        | 1.001  |   | W  |     |   | 0-Off, 1-On                                                              |
|                   | OP MODE      | х       | х | х | х    | х   | х   | x    | x       | Operating Mode (all units)            | 1 byte | DPT_HVACContrMode | 20.105 |   | W  |     |   | 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry                                    |
|                   | OP MODE      | х       | х | х | х    | х   | х   | х    | х       | Operating Mode (all units)            | 1 byte | Non-standarized   | 5.x    |   | W  |     |   | 0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool, 5-<br>Cool Storage, 6-Heat Storage |
| GLOBAL<br>SIGNALS |              | х       | х | х | х    | х   | х   | х    | х       | Fan Speed (all units)                 | 1 byte | Non-standarized   | 5.x    |   | W  |     |   | 1-Low, 2-Mid, 3-High                                                     |
| CICIVILO          |              | х       | х | х | х    | х   | х   | х    | х       | Fan Speed AUTO (all units)            | 1 bit  | DPT_Switch        | 1.001  |   | W  |     |   | 1-Set auto fan; 0-Stop auto fan                                          |
|                   | FAN<br>SPEED | х       | х | х | х    | х   | х   | х    | х       | Vane position swing (all units)       | 1 bit  | DPT_Switch        | 1.001  |   | W  |     |   | 0-Swing Off, 1-Swing On                                                  |
|                   | SETP<br>TEMP | х       | х | х | х    | х   | х   | х    | х       | Temperature Setpoint (°C) (all units) | 2 byte | DPT_Value_Temp    | 9.001  |   | W  |     |   | Cool:1830 °C; Heat:1630 °C                                               |
|                   | VENT         | х       | х | х | х    | х   | х   | х    | х       | Vent. On/Off (all units)              | 1 bit  | DPT_Switch        | 1.001  |   | W  |     |   | 0-Off, 1-On                                                              |
|                   | HOT<br>WATER | х       | x | x | x    | х   | x   | x    | x       | Hot Water On/Off (all units)          | 1 bit  | DPT_Switch        | 1.001  |   | w  |     |   | 0-Off, 1-On                                                              |
|                   | ON / OFF     | х       | х | х | х    | х   |     | х    | х       | Control_OXXUXX_On/Off                 | 1 bit  | DPT_Switch        | 1.001  |   | W  |     |   | 0-Off,1-On                                                               |
|                   | ON7 OI I     | Y OFF X | х | х | х    | х   |     | х    | х       | Status_OXXUXX_On/Off                  | 1 bit  | DPT_Switch        | 1.001  | R |    | Т   |   | 0-Off,1-On                                                               |
|                   | OP MODE      | х       | х |   | х    | х   |     | х    | х       | Control_OXXUXX_Operation mode         | 1 byte | DPT_HVACContrMode | 20.105 |   | W  |     |   | 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry                                    |
|                   |              | х       | х |   | х    | х   |     | х    | х       | Status_OXXUXX_Operation mode          | 1 byte | DPT_HVACContrMode | 20.105 | R |    | Т   |   | 0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry                                    |

|                 |              | х | х | х | х | х | х | Control_OXXUXX_Operation mode       | 1 byte | Non-standarized | 5.x   |   | W |   | 0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool, 5-<br>Cool Storage, 6-Heat Storage |
|-----------------|--------------|---|---|---|---|---|---|-------------------------------------|--------|-----------------|-------|---|---|---|--------------------------------------------------------------------------|
|                 |              | х | х | х | х | х | х | Status_OXXUXX_Operation mode        | 1 byte | Non-standarized | 5.x   | R |   | Т | 0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool, 5-<br>Cool Storage, 6-Heat Storage |
|                 |              | х | х | х | х | х | х | Control_OXXUXX_Mode Cool/Heat       | 1 bit  | DPT_Heat/Cool   | 1.100 |   | W |   | 0-Cool, 1-Heat                                                           |
|                 |              | х | х | х | х | х | х | Status_OXXUXX_Mode Cool/Heat        | 1 bit  | DPT_Heat/Cool   | 1.100 | R |   | Т | 0-Cool, 1-Heat                                                           |
|                 |              | х | х | х | х | х | х | Control_OXXUXX_Heat mode&ON         | 1 byte | DPT_Scaling     | 5.001 |   | W |   | 0%-Off, 1%-100%-On+Heat                                                  |
|                 |              | х | х | х | х | х | х | Control_OXXUXX_Cool mode&ON         | 1 byte | DPT_Scaling     | 5.001 |   | W |   | 0%-Off, 1%-100%-On+Cool                                                  |
|                 |              | х |   | х | х | х |   | Control_OXXUXX_Auto mode            | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set auto mode                                                          |
|                 |              | х |   | х | х | х |   | Status_OXXUXX_Auto mode             | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Auto mode active, 0-Auto mode not active                               |
|                 |              | х | х | x | х | х | х | Control_OXXUXX_Heat mode            | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set heat mode                                                          |
| UNIT<br>SIGNALS |              | х | х | х | х | х | х | Status_OXXUXX_Heat mode             | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Heat mode active, 0-Heat mode not active                               |
|                 |              | х | х | х | х | х | х | Control_OXXUXX_Cool mode            | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set cool mode                                                          |
|                 |              | х | х | х | х | х | х | Status_OXXUXX_Cool mode             | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Cool mode active, 0-Cool mode not active                               |
|                 |              | х |   |   | х |   |   | Control_OXXUXX_Fan mode             | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set fan mode                                                           |
|                 |              | х |   |   | х |   |   | Status_OXXUXX_Fan mode              | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Fan mode active, 0-Fan mode not active                                 |
|                 |              | х |   |   | х |   |   | Control_OXXUXX_Dry mode             | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set dry mode                                                           |
|                 |              | х |   |   | х |   |   | Status_OXXUXX_Dry mode              | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Dry mode active, 0-Dry mode not active                                 |
|                 |              |   |   |   |   |   | х | Control_OXXUXX_Cool storage mode    | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set cool storage mode                                                  |
|                 |              |   |   |   |   |   | х | Status_OXXUXX_Cool storage mode     | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Cool storage mode active, 0-Cool storage mode not active               |
|                 |              |   |   |   |   |   | х | Control_OXXUXX_Heat storage mode    | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set heat storage mode                                                  |
|                 |              |   |   |   |   |   | х | Status_OXXUXX_Heat storage mode     | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Heat storage mode active, 0-Heat storage mode not active               |
|                 |              | х |   |   |   |   |   | Control_OXXUXX_Fan speed enumerated | 1 byte | Non-standarized | 5.x   |   | W |   | 1-Low, 2-Mid, 3-High                                                     |
|                 |              | х |   |   |   |   |   | Status_OXXUXX_Fan speed enumerated  | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-Low, 2-Mid, 3-High                                                     |
|                 | FAN<br>SPEED | х |   |   |   |   |   | Control_OXXUXX_Fan speed scaling    | 1 byte | DPT_Scaling     | 5.001 |   | W |   | Thersholds (049%, 5082%, 83100%)                                         |

|                 |                  | х |   |   |  | Status_OXXUXX_Fan speed scaling                                      | 1 byte | DPT_Scaling    | 5.001 | R |   | Т | Thersholds (33%, 67%, 100%)                  |
|-----------------|------------------|---|---|---|--|----------------------------------------------------------------------|--------|----------------|-------|---|---|---|----------------------------------------------|
|                 |                  | х |   |   |  | Control_OXXUXX_Fan speed low                                         | 1 bit  | DPT_Switch     | 1.001 |   | W |   | 1-Set fan speed low                          |
|                 |                  | х |   |   |  | Status_OXXUXX_Fan speed low                                          | 1 bit  | DPT_Switch     | 1.001 | R |   | Т | 1-Speed low active, 0-Speed low not active   |
|                 |                  | х |   |   |  | Control_OXXUXX_Fan speed mid                                         | 1 bit  | DPT_Switch     | 1.001 |   | W |   | 1-Set fan speed mid                          |
|                 |                  | х |   |   |  | Status_OXXUXX_Fan speed mid                                          | 1 bit  | DPT_Switch     | 1.001 | R |   | Т | 1-Speed mid active, 0-Speed mid not active   |
|                 |                  | х |   |   |  | Control_OXXUXX_Fan speed high                                        | 1 bit  | DPT_Switch     | 1.001 |   | W |   | 1-Set fan speed high                         |
|                 |                  | x |   |   |  | Status_OXXUXX_Fan speed high                                         | 1 bit  | DPT_Switch     | 1.001 | R |   | Т | 1-Speed high active, 0-Speed high not active |
|                 |                  | х |   |   |  | Control_Fan speed Man/Auto                                           | 1 bit  | DPT_Switch     | 1.001 |   | w |   | 0-Manual; 1-Auto                             |
| UNIT<br>SIGNALS |                  | х |   |   |  | Status_Fan speed Man/Auto                                            | 1 bit  | DPT_Switch     | 1.001 | R |   | Т | 0-Manual; 1-Auto                             |
| 010111120       | VANE<br>POS      | х |   |   |  | Control_OXXUXX_Vane position swing                                   | 1 bit  | DPT_Switch     | 1.001 |   | W |   | 0-Swing Off, 1-Swing On                      |
|                 |                  | x |   |   |  | Status_OXXUXX_Vane position swing                                    | 1 bit  | DPT_Switch     | 1.001 | R |   | Т | 0-Swing Off, 1-Swing On                      |
|                 |                  | х | х | х |  | Control_OXXUXX_Temperature Setpoint (°C)                             | 2 byte | DPT_Value_Temp | 9.001 |   | W |   | Cool:1830 °C; Heat:1630 °C                   |
|                 |                  | х | х | х |  | Status_OXXUXX_Temperature Setpoint (°C)                              | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | Cool:1830 °C; Heat:1630 °C                   |
|                 |                  | х | х | х |  | Status_OXXUXX_AC Ambient Temperature (°C) Control_OXXUXX_KNX ambient | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | -41100 °C                                    |
|                 |                  | х | х | х |  | Control_OXXUXX_KNX ambient<br>Temperature (°C)                       | 2 byte | DPT_Value_Temp | 9.001 |   | W |   | °C                                           |
|                 |                  | х |   |   |  | Control_OXXUXX_Disch.Setpoint Cool IU                                | 2 byte | DPT_Value_Temp | 9.001 |   | W |   | 818 °C                                       |
|                 |                  | х |   |   |  | Status_OXXUXX_Disch.Setpoint Cool IU                                 | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | 818 °C                                       |
|                 | TEMPERA<br>TURES |   |   | х |  | Control_OXXUXX_Disch.Setpoint Cool AHU                               | 2 byte | DPT_Value_Temp | 9.001 |   | w |   | 825 °C                                       |
|                 |                  |   |   | х |  | Status_OXXUXX_Disch.Setpoint Cool AHU                                | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | 825 °C                                       |
|                 |                  | х |   |   |  | Control_OXXUXX_Disch.Setpoint Heat IU                                | 2 byte | DPT_Value_Temp | 9.001 |   | W |   | 3043 °C                                      |
|                 |                  | х |   |   |  | Status_OXXUXX_Disch.Setpoint Heat IU                                 | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | 3043 °C                                      |
|                 |                  |   |   | х |  | Control_OXXUXX_Disch.Setpoint Heat AHU                               | 2 byte | DPT_Value_Temp | 9.001 |   | W |   | 1843 °C                                      |
|                 |                  |   |   | х |  | Status_OXXUXX_Disch.Setpoint Heat AHU                                | 2 byte | DPT_Value_Temp | 9.001 | R |   | Т | 1843 °C                                      |

|         |                        | х |   |   |   | х |   |   |   | Status_OXXUXX_Disch. Current Temp.         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | oC.                                                                             |
|---------|------------------------|---|---|---|---|---|---|---|---|--------------------------------------------|--------|-----------------|-------|---|---|---|---------------------------------------------------------------------------------|
|         |                        | х | х | х | х | х | х | х | х | Status_OXXUXX_Unit error code              | 2 byte | Non-standarized | 8.x   | R |   | Т | 0-No Error, X-Error (100999)                                                    |
|         | ERROR<br>CODE          |   |   |   |   |   |   |   | х | Status_OXXUXX_Error slave chiller unit     | 2 byte | Non-standarized | 8.x   | R |   | Т | 0-No error, X-Error (100 to 999)                                                |
|         |                        |   |   |   |   |   |   |   | х | Status_OXXUXX_Slave chiller in error       | 2 byte | Non-standarized | 8.x   | R |   | Т | bX: 1-Error in Unit X (b15b0)                                                   |
|         | FILTER                 | х |   |   |   | х | х | х |   | Status_OXXUXX_FilterSign                   | 1 bit  | DPT_Alarm       | 1.005 | R |   | Т | 0-Normal, 1-Alarm                                                               |
|         | TIETEK                 | х |   |   |   |   | х | х |   | Control_OXXUXX_FilterReset                 | 1 bit  | DPT_Reset       | 1.015 |   | W |   | 0-No reset, 1-Reset                                                             |
|         | COMM<br>STATUS         | х | х | x | х | х | х | х | х | Status_OXXUXX_Communication status         | 1 byte | Non-standarized | 5.x   | R |   |   | b0-Exist, b1-Ready, b2-Data updated, b3-<br>Type OK                             |
|         | REMOC.                 | х | х | х | х | х | х | х | х | Control_OXXUXX_Remote controll disablement | 1 bit  | DPT_Bool        | 1.002 |   | W |   | 0-No disabled, 1-Disabled                                                       |
|         | REMOC.                 | х | х | х | х | х | х | х | х | Status_OXXUXX_Remote controll disablement  | 1 bit  | DPT_Bool        | 1.002 | R |   | Т | 0-No disabled, 1-Disabled                                                       |
|         | BUZZER                 | х |   |   |   |   |   |   |   | Control_OXXUXX_Buzzer Sound                | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 0-Buzzer On, 1-Buzzer Off                                                       |
|         | UNIT TYP               | х | х | х | x | х | х | х | х | Status_OXXUXX_Unit type                    | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-IU, 2-HE, 3-HT, 4-AHU, 5-ERV, 6-<br>ERV+, 7-EHS, 8-CHILLER, 13:Not<br>Defined |
|         | HOT<br>WATER<br>ON/OFF |   | х | х | х |   |   |   |   | Control_OXXUXX_HotWater On/Off             | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 0-Off, 1-On                                                                     |
| UNIT    |                        |   | х | х | х |   |   |   |   | Status_OXXUXX_HotWater On/Off              | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 0-Off, 1-On                                                                     |
| SIGNALS |                        |   | х | х |   |   |   |   |   | Control_OXXUXX_HotWater Mode HE/HT         | 1 byte | Non-standarized | 5.x   |   | W |   | 1-Eco; 2-Standby; 3-Power                                                       |
|         |                        |   | х | х |   |   |   |   |   | Status_OXXUXX_HotWater Mode HE/HT          | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-Eco; 2-Standby; 3-Power                                                       |
|         |                        |   |   |   | х |   |   |   |   | Control_OXXUXX_HotWater Mode EHS           | 1 byte | Non-standarized | 5.x   |   | W |   | 1-Eco; 2-Standby; 3-Power; 4-Force                                              |
|         |                        |   |   |   | х |   |   |   |   | Status_OXXUXX_HotWater Mode EHS            | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-Eco; 2-Standby; 3-Power; 4-Force                                              |
|         |                        |   | х | х | Х |   |   |   |   | Control_OXXUXX_HotWater Eco Mode           | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set eco mode                                                                  |
|         | НОТ                    |   | х | х | х |   |   |   |   | Status_OXXUXX_HotWater Eco Mode            | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Eco mode active, 0-Eco mode not active                                        |
|         | WATER<br>MODE          |   | х | Х | Х |   |   |   |   | Control_OXXUXX_HotWater Standby Mode       | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set standby mode                                                              |
|         |                        |   | х | x | х |   |   |   |   | Status_OXXUXX_HotWater Standby Mode        | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Standby mode active, 0-Standby mode not active                                |
|         |                        |   | х | х | х |   |   |   |   | Control_OXXUXX_HotWater Power Mode         | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set power mode                                                                |
|         |                        |   | х | x | x |   |   |   |   | Status_OXXUXX_HotWater Power Mode          | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Power mode active, 0-Power mode not active                                    |
|         |                        |   |   |   | х |   |   |   |   | Control_OXXUXX_HotWater Force Mode         | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set force mode                                                                |
|         |                        |   |   |   | х |   |   |   |   | Status_OXXUXX_HotWater Force Mode          | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Force mode active, 0-Force mode not active                                    |
|         |                        |   | х |   |   |   |   |   |   | Control_OXXUXX_HotWater Setpoint HE        | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | 3075 °C                                                                         |
|         |                        |   | х |   |   |   |   |   |   | Status_OXXUXX_HotWater Setpoint HE         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | 3075 °C                                                                         |

|                  |   | х |   |   |   |   | Control_OXXUXX_HotWater Setpoint HT        | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | 3575 °C                                                                |
|------------------|---|---|---|---|---|---|--------------------------------------------|--------|-----------------|-------|---|---|---|------------------------------------------------------------------------|
|                  |   | х |   |   |   |   | Status_OXXUXX_HotWater Setpoint HT         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | 3575 °C                                                                |
|                  |   |   | х |   |   |   | Control_OXXUXX_HotWater Setpoint EHS       | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | 3070°C                                                                 |
|                  |   |   | х |   |   |   | Status_OXXUXX_HotWater Setpoint EHS        | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | 3070°C                                                                 |
|                  | х | х | х |   |   |   | Status_OXXUXX_HotWater Current Temperature | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | °C                                                                     |
|                  | х | х | х |   |   |   | Status_OXXUXX_WaterIn Temperature          | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | °C                                                                     |
|                  | х | х | х |   |   |   | Status_OXXUXX_WaterOut Temperature         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | ∘C                                                                     |
|                  | х |   |   |   |   |   | Control_OXXUXX_WaterOut Setpoint HE        | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | Cool (525 °C) Heat(1550 °C)                                            |
|                  | х |   |   |   |   |   | Status_OXXUXX_WaterOut Setpoint HE         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | Cool (525 °C) Heat(1550 °C)                                            |
|                  |   | х |   |   |   |   | Control_OXXUXX_WaterOut Setpoint HT        | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | 2580 °C                                                                |
|                  |   | х |   |   |   |   | Status_OXXUXX_WaterOut Setpoint HT         | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | 2580 °C                                                                |
|                  |   |   | х |   |   |   | Control_OXXUXX_WaterOut Setpoint EHS       | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | Cool(525 °C) Heat(1555°C)                                              |
|                  |   |   | х |   |   |   | Status_OXXUXX_WaterOut Setpoint EHS        | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | Cool(525 °C) Heat(1555°C)                                              |
|                  |   |   |   |   |   | х | Control_OXXUXX_WaterOut Setpoint CHILLER   | 2 byte | DPT_Value_Temp  | 9.001 |   | W |   | CHILLER-Cool/Cool Storage (-1025°C)<br>CHILLER-Heat/Hot Water (2555°C) |
|                  |   |   |   |   |   | х | Status_OXXUXX_WaterOut Setpoint CHILLER    | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | CHILLER-Cool/Cool Storage (-1025°C)<br>CHILLER-Heat/Hot Water (2555°C) |
| GROUP<br>SIGNALS |   |   |   |   |   | х | Status_OXXUXX_Water Out Average Temp.      | 2 byte | DPT_Value_Temp  | 9.001 | R |   | Т | °C                                                                     |
|                  |   |   |   | х | х |   | Control_OXXUXX_Vent. On/Off                | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 0-Off, 1-On                                                            |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. On/Off                 | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 0-Off, 1-On                                                            |
|                  |   |   |   | х | х |   | Control_OXXUXX_Vent. Operation mode        | 1 byte | Non-standarized | 5.x   |   | W |   | 1-Bypass, 2-HeatEx, 3-Sleep, 4-Auto                                    |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. Operation mode         | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-Bypass, 2-HeatEx, 3-Sleep, 4-Auto                                    |
|                  |   |   |   | х | х |   | Control_OXXUXX_Vent. Bypass mode           | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Bypass mode                                                |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. Bypass mode            | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Bypass mode active, 0-Vent. Bypass mode not active             |
|                  |   |   |   | х | Х |   | Control_OXXUXX_Vent. HeatEx mode           | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. HeatEx mode                                                |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. HeatEx mode            | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. HeatEx mode active, 0-Vent. HeatEx mode not active             |
|                  |   |   |   | х | х |   | Control_OXXUXX_Vent. Sleep mode            | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Sleep mode                                                 |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. Sleep mode             | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Sleep mode active, 0-Vent. Sleep mode not active               |
|                  |   |   |   | х | х |   | Control_OXXUXX_Vent. Auto mode             | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Auto mode                                                  |
|                  |   |   |   | х | х |   | Status_OXXUXX_Vent. Auto mode              | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Auto mode active, 0-Vent. Auto mode not active                 |

|                  |  |  | х | х | Control_OXXUXX_Vent. Fan speed enumerated | 1 byte | Non-standarized | 5.x   |   | W |   | 1-Low, 2-High, 3-Turbo                                             |
|------------------|--|--|---|---|-------------------------------------------|--------|-----------------|-------|---|---|---|--------------------------------------------------------------------|
|                  |  |  | х | Х | Status_OXXUXX_Vent. Fan speed enumerated  | 1 byte | Non-standarized | 5.x   | R |   | Т | 1-Low, 2-High, 3-Turbo                                             |
|                  |  |  | х | х | Control_OXXUXX_Vent. Fan speed scaling    | 1 byte | DPT_Scaling     | 5.001 |   | W |   | Thersholds (049%, 5082%, 83100%)                                   |
| ODOLID           |  |  | х | х | Status_OXXUXX_Vent. Fan speed scaling     | 1 byte | DPT_Scaling     | 5.001 | R |   | Т | Thersholds (33%, 67%, 100%)                                        |
| GROUP<br>SIGNALS |  |  | Х | Х | Control_OXXUXX_Vent. fan speed low        | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Fan speed low                                          |
|                  |  |  | х | х | Status_OXXUXX_Vent. fan speed low         | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Fan speed low active, 0-Vent. Fan speed low not active     |
|                  |  |  | Х | х | Control_OXXUXX_Vent. fan speed high       | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Fan speed high                                         |
|                  |  |  | х | х | Status_OXXUXX_Vent. fan speed high        | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Fan speed high active, 0-Vent. Fan speed high not active   |
|                  |  |  | х | х | Control_OXXUXX_Vent. fan speed turbo      | 1 bit  | DPT_Switch      | 1.001 |   | W |   | 1-Set Vent. Fan speed turbo                                        |
|                  |  |  | х | х | Status_OXXUXX_Vent. fan speed turbo       | 1 bit  | DPT_Switch      | 1.001 | R |   | Т | 1-Vent. Fan speed turbo active, 0-Vent. Fan speed turbo not active |